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Abstract
There has been a rapid increase in the adoption of
serverless functions in the industry. Typical use
cases range from building single page web applica-
tions to processing Internet of Things (IoT) based
events. In this work, we evaluate the performance
of serverless functions with respect to network,
memory and I/O overhead. Specifically, we eval-
uate functions built by the OpenFaas framework.
Additionally, we introduce a serverless implemen-
tation of the MapReduce framework. Our results
show that the performance of a function is depen-
dent on more than just the task being performed.

1 Introduction
Cloud services have revolutionized how organizations
manage applications, but many companies still view their
systems in terms of servers, even though they no longer
work with physical servers. A serverless approach is when
we take away the concept of servers, and begin to think of
back-end applications as workflow, distributed logic, and
externally managed data stores. Serverless means back-end
application logic is still written by the developer, but unlike
traditional architectures, it’s run in stateless containers that
are event-triggered, and ephemeral. Despite the name, it does
not actually involve running code without servers. The name
serverless is used because the organization that owns the
system does not have to purchase, or provision servers for
the back-end code to run on, thereby providing operational
cost savings.

1.1 Containers and Kubernetes
Containers are an operating-system-level virtualization tech-
nique for running multiple isolated systems on a host using a
single kernel. At their core, containers are a way of packaging
software, such that we know exactly how they will run. There
are no unexpected errors when we move it to a new machine.
An application’s code, libraries, and dependencies are packed
together in the container as an immutable artifact. Running
a container is like running a virtual machine, without the
overhead of spinning up an entire operating system. For
this reason, bundling your application in a container versus

a virtual machine will significantly improve startup time.
We use Docker [1] for creating containers in our experiments.

Kubernetes [2] on the other hand is a platform for
managing containers, facilitating both configuration and au-
tomation. It abstracts deployment, monitoring and scaling of
containers. Cluster groups together hosts running containers,
and Kubernetes helps you easily and efficiently manage these
clusters by defining and maintaining the policies for schedul-
ing, auto-scaling and grouping containers. Kubernetes has a
master node and multiple slave nodes that run the containers.
The platform also introduces the concept of pods which are
a logical group of containers that are tightly coupled and
dependant on one other for servicing requests. In our work,
we have a single container that is executed in isolation -
however, we keep the term pod for the rest of the paper.

1.2 OpenFaas [3]
OpenFaas is a well-known open-source framework for build-
ing serverless functions over Docker and Kubernetes (or
Docker Swarm). OpenFaas builds up using three core com-
ponents: API Gateway, Function Watchdog and Prometheus.
• API Gateway - Exposes the API endpoints to the hosted

functions, and scales the functions according to the re-
quest demand by altering the service replica count in the
Kubernetes API.
• Function Watchdog - A lightweight Golang HTTP server

acting as an entry point for HTTP requests to be for-
warded to the target function via STDIN. The response
is sent back to the caller by writing to STDOUT from
the function.
• Prometheus - It is responsible for metrics collection (in-

vocation count, requests/second), and to trigger the API
gateway to auto-scale.

The OpenFaas wraps the function into Docker containers that
are then used for executing on the nodes, being managed by
Kubernetes.

1.3 Contributions
Our objective and contributions of our work is two-fold:

1. We investigate our setup of serverless to evaluate if there
is significant overhead in network, processing and I/O



when using serverless function built using OpenFaas.
For a given workload, we perform a series of experi-
ments to answer these question that help us determine
performance is affected depending on the number of
nodes, number of pods in a node and cold start or warm
running of a container. We also vary the workload for
few workloads. Specifically, our experiments focus on
the latency of response, speed of the computation, band-
width and scalability.

2. We propose a MapReduce implementation similar in
spirit to the Google’s MapReduce [5] and Apache
Hadoop [4]. Our implementation is inspired by an article
by Amazon [12] in the sense we have a set of functions
(mappers, reducers, coordinators) that we chain together
to perform the required computation. We take perform
primary experiments on our implementation and try to
give reasoning about the costs of the operations.

2 Related Work
Joseph et al. [7] investigate the first-generation of serverless
compute offerings in the public cloud services. The authors
believe that serverless offerings are a bad fit for large data
systems workloads due to limited lifetimes, I/O bottlenecks,
and data communication through slow storage. The authors
point out that perhaps the biggest architectural shortcoming
of functions is that they run on isolated VMs, separate from
data. In addition, serverless functions are short-lived and
non-addressable, so their ability to cache state internally to
service repeated requests is limited. [9] present the use of
serverless function for analyses of big biomedical data. The
authors propose that serverless computing has tremendous
potential for biomedical research in terms of ease-of-use,
instantaneous scalability and cost effectiveness.

While the traditional use case for serverless function con-
tinues to focus on building micro-services and event-driven
processing pipelines, Youngbin et al. [8] examine the possi-
bility of analytical processing on big data. The work presents
Flint, a prototype Spark execution engine that uses AWS
Lambda to provide a pay-as-you-go cost model. With Flint,
a developer uses PySpark without needing an actual Spark
cluster. For their experimental setup, Flint provides better
performance at a lower cost when compared to PySpark and
Spark. Qubole [11] specializes in building big data system on
serverless platforms. In 2017, they presented an implemen-
tation of Spark, and on-demand ETL pipelines using AWS
Lambda.

3 Experimental Setup
All experiments were performed on a cluster provided by
Data System Group at the University of Waterloo. Hard-
ware specifications of each node and software versions can
be seen in Table 1. Every node is allotted the default memory
and CPU limits. Our environment for experiments has a mas-
ter node and up to 6 homogeneous slave nodes. To find the
overheads, the task we are performing is implemented as an
OpenFaas function using python, timed and compared with
the same implementation using script in the same language

locally on one of the cluster nodes not involved in the envi-
ronment. We ignore network costs because it is a negligible
overhead (0.3 milliseconds). we repeat each experiment 100
times and report the average (and, standard deviation) at all
places.

Cluster Description
Attribute Value
Memory 16GB
CPU 6-core Intel Xeon

E5-2620 @ 2.10 Ghz
Ethernet Mellanox MT27500

ConnectX
NFS 1TB
Docker version 18.09.2
Kubernetes version
features

1.14

Openfaas version 0.8.6

Table 1: Data description

3.1 Ping and Compute
The experiments for Ping and Compute have a similar setup.
A client function invocation is first processed by the Kuber-
netes master, and then assigned to one of the slave nodes
(where the relevant pod is spawned) for execution.

The ping experiment is a simple network request, with no
computation in the function. The response from the slave
node is sent directly to the client. This test is meant to find
the overhead due to the cost incurred at Kubernetes master for
internal processing and redirection to one of the slaves. For
ping, we measure times in two setups:
• Cold-start: When the pod is not spawned in one of the

slave nodes. In this setup, when the request is received
by the Kubernetes master, the pod is made to run and
likewise the internal routing table is changed, before the
request actually is begun to be catered.
• Warm-start: When the pod is already up and running

on at least one of the slave nodes.
The compute operation, finds the largest prime number less

than or equal to given input. The different values of n were:
1, 1000, 5000, 1000, 50000, 100000 and 500000. The objec-
tive here was to see if there is an increase in overhead with
increase in computation time.

Figure 5 presents the setup for ping and compute experi-
ments.

3.2 Scalability
The objective for the scalability test is to find the performance
of OpenFaas when the number of requests is far greater than
the available containers. The experimental setup is similar to
ping and compute, with 200 requests being concurrently fired
to the Kubernetes master. We performed the experiments on
two variants:
• Fixed number of pods (p) already exist in the clus-

ter - To test the response time of the slowest of the
200 requests and get an idea of the level of concurrency



achieved with varying p and also the number of slave
nodes.
• Auto-scaling - To capture the response of the setup

to the increasing requests w.r.t efficiently scaling for
dealing with peak requests.

The experiment used a similar setups and routing pipelines as
that of ping and compute.

Figure 1: Experimental Setup for Ping, Compute and Scale tests

3.3 I/O
The setup for performing the I/O is similar to ping and test,
with an addition of NFS storage, which is where the the input
files are stored. The request from the client is received by the
Kubernetes Master, which is then assigned to one of the slave
nodes. The OpenFaas function has details about the directo-
ries of interest, how it can instantiate a SFTP connection with
the NFS host. We implemented a function to find the num-
ber of words in a text files of size 10MB, 25MB, 50MB and
100MB. Figure. 2 visualizes the setup for the IO operation.

Figure 2: Experimental Setup for IO

3.4 Serverless MapReduce Framework
The MapReduce is a framework that enables parallel and
distributed processing on large datasets. The core compo-
nents of MapReduce are the master, set of mappers and set
of reducers. The master keeps track of all mappers, reducers,
and their state of operation and state of execution. A mapper
task is the first phase of processing that processes each
input record (from the NFS) and generates an intermediate
key-value pair. Traditionally, the key-value pair is stored
on local disk, but in our implementation, the intermediate
output is stored in the NFS storage or returned to the master

node. The reducer takes the output of multiple mappers, to
generate the output. A typical MapReduce implementation
will partition function (sort, hash, etc) mapper’s output
before the reducer processes the output.

For our implementation of a serverless MapReduce
framework, we have a function imitating the MapReduce
master, called Coordinator. This node is responsible for
keeping track of the execution states of concurrent mappers
and reducers. If any mapper or reducer fails, their task
will be re-assigned by invoking the required function with
same set of parameters. Progress of overall execution and
the input file that has to be re-processed is tracked by the
Coordinator - hence, stateful. This behaviour and long
execution time of the Coordinator is very unserverless-like
because serverless functions typically hold no state and are
short-lived (maximum of 15 minutes for AWS Lambda). The
Coordinator is responsible for informing the mappers about
their input files. The mappers are concurrently executed on
multiple pods on preferably different slaves. Once a mapper
finishes processing the input file, it’s result is returned to
the master or stored the in the NFS storage. When all the
mappers finish their execution, the master will spawn the
reducers, passing the data or pointers to the data. Once all
reducers finish execution, the process is complete. Figure.
3 presents our Serverless MapReduce model along with the
sequence of various micro operations.

We experimented with 2 simple variants of the MapRe-
duce, that are much reduced in capabilities than MapReduce
in its original form. However, the aim of this paper is to per-
form experiments rather than building a complete end-to-end
system. Our implementation is more about playing with the
possiblities. The two variants are:
• OnlyMappers In this version, we only have a dedicated

mapper function that operates on the data. The final con-
solidation of the result is done at the Coordinator only.
• MappersAndSimpleReducers In this version, we have

a dedicated mapper functions that operates on the data
and also a set of reducers that operate on the data in lev-
els. However, our mappers do not store the intermediary
files to any storage, but return it to the coordinator to be
passed to the reducers iteratively.

Figure 3: Serverless MapReduce Framework



4 Results and Inferences

We describe the results for the experiments followed by a dis-
cussion about the insights we have obtained.

4.1 Ping

Figure 4: Results for Ping experiment

Figure 4 shows the results for the two variants of experiments
we performed on the ping along with the stats for executing
the identical procedure locally. We can infer the fact that
there is an overhead of about 55 ms associated with executing
over the OpenFaas environment. We suspect this cost to
be incurred at the Kubernetes master for book-keeping and
routing over to one of the slaves.

The cost for the case when the pod is not spawned is even
greater as expected (possibly due to the reasons stated above,
among others) and comes out to be around 1850 ms. This
cost is aligned (or a bit on a higher end) to the ones we found
reported on the web. We also see that the standard deviation
for cold start is greater than that of Warm start, but it is not
too significantly high (given approx. 23x increase in average)
to be investigated.

4.2 Compute

Figure 5 shows the plot of the increasing overhead with the
increase in the computation that is done inside the function
hosted in our environment. The x-axis of the graph gives the
value of n, the size of our computation, while the left x-axis
gives the overhead time in ms. The reference for calculating
the overhead is identical function executed locally. Also in
the graph is a reference plot of n-squared with axis on the
right side.

Analyzing the graph, we make out that the overhead grows
slower than the n-squared but a little faster than the linear.
This is indeed in align to the amortized complexity of our al-
gorithm for calculating the primes one at a time till n. To infer
about the overhead, it seems that there some cost of comput-
ing inside the container than directly in the default userspace
of the node. A possible reason for this could be the resource
sharing scheme at play on the slave node because of which
the container gets a reduced unequal share of the system re-
sources. This reason is further confirmed by a similar set of
overheads we get in our I/O test as well.

Figure 5: Overhead increases linearly w.r.t input

4.3 Scalability
We summarize the numbers we get from our test for scala-
bility on our setup. We noted down the number of requests
rejected and the worst response time for catering 200 simul-
taneous requests while varying the number of running pods
and the number of slaves in our setup. For testing the auto-
scaling feature, we didn’t bound the number of pods and let it
to scale organically while noting the time span in which our
cluster expanded to the maximum capacity required. We de-
fine the complete concurrency as the mean time taken by the
requests to be served when there is a single pod on a slave
node, serving to just one request.

Figure 6: Time taken to server 200 requests for fixed pods

Figure 6 shows as we increase the number of pods, we de-
crease the number of requests that were getting rejected in
our setup. However, increasing the pods doesn’t actually help
us achieve the complete concurrency since after a point, pods
on the slave node starts fighting for the system resources and
hence, thrashing becomes the reason for the overhead in serv-
ing requests. The problem can be mediated by having more
slaves in the setup, which leads to the decrease in the value
of pods-per-slave and hence decrease the overhead, thereby
improving the worst response time.

Figure 7 is the evaluation of the auto-scaling policy
of our setup. The policy is highly customizable to de-
fine the minimum replicas (min replicas), maximum repli-
cas (max replicas) and the frequency (freq) of scaling in a
setup. Openfaas records the requests-per-second metric for



Figure 7: Auto-scaling with 3 slave and 6 slave nodes

each hosted function which when exceeds the predefined
threshold leads to spawning more pods till the number meets
‘max replica‘. The scaling is based on trigger which can be
controlled by freq. On each trigger, the number of new repli-
cas spawned is 20% of max replica. We run 4 set of exper-
iments by varying max replica (20 and 40) and number of
slave nodes.

From our results of auto-scaling, we figure out that the
characteristic curve (stepped hyperbola) of figure 7 can be
tuned by controlling 3 variable in the system.

• The worst response time of the setup is the inverse pro-
portional function of the number of nodes we have since
this will help us scale the number of pods without actu-
ally running into thrashing.

• The smaller the freq in our setup the greater is the ver-
tical slope of the characteristic curve. This means that
smaller is the time to reach stability in light of an unan-
ticipated load.

• The value of the max replica determines the number of
scaling steps the setup takes to scale to a stable size.

Our finding is depicted in Figure. 8.

Figure 8: Increasing the maximum replicas, number of slaves and
frequency of alerts will provide better performance

4.4 I/O

Figure 9: I/O Results. Significant increase in overhead w.r.t file size

The results for the I/O experiment are presented in Figure. 9.
There is significant overhead when compared to running the
same task on a local machine, but it is surprising to see the in-
crease in overhead as the file size increases. We contemplate
that the reason for this observation is because the containers
are isolated processes running in the kernel space, competing
not just for CPU and memory, but also kernel resources. Sim-
ilar observations have been reported on Github and technical
blogs [10][6]. These posts have specifically mentioned kernel
commands such as d lookup loop and posix fadvise() caus-
ing these issues. To come up with concrete conclusions for
our observations, we have to profile kernel calls with a tool
such as perf.

4.5 Serverless MapReduce
The workload we chose for the case of only Mappers was to
count the total number of words in a set of 200 news docu-
ments. While for the case 2, we count the number of words
that begin with each of the 26 characters on the same load.

Figure 10 shows the results for the first case, wherein the
mapper execution time shows a linearly increasing trend with



the number of file given to it for processing. Since the map-
pers are called concurrently from the coordinators, the time
taken by it is more than mappers, probably having much over-
head due to few failed mapper operations. After the mapper
returns the count of each set of files assigned to it, the coordi-
nator just sums and returns the result. Hence, the coordinator
has constant overhead except for calling mappers, which is
evident from the figure.

Figure 11 shows the case 2 in which we have reducers to
process the results that are returned from the mappers in a
multi-level arrangement. The number of reducers that are
called for a given job is the function of the number of map-
pers assigned for the given job - the reducer can take results
of only 2 mappers to process at a time. The trends in graph
are similar to what we anticipated in which execution time of
the coordinator is now sub-linear to the number of reducers it
calls (in comparision to being constant in case 1).

Figure 10: Time taken for a mapper to process input file vs. time
taken by coordinator to complete entire MapReduce process

Figure 11: Time taken for a mapper to process input file vs. time
taken by reducer to process intermediate file vs. time taken by coor-
dinator to complete entire MapReduce process

5 Conclusion
With serverless architectures, developers do not need to
worry about purchasing, provisioning, and managing back-
end servers, and at the same time offer greater scalability

and quicker time to release, all at a reduced cost. However,
serverless computing is not a silver bullet for all applications.
There are many considerations to be mindful of, before
adopting a serverless architecture. A function booting from
a cold-state may degrade performance. Too many containers
running on the same host will cause containers to compete
for resources. For data data processing applications, having a
single function do the heavy lifting breaks common assump-
tions about serverless architecture, such as statelessness and
short execution time. Our results show that there is a notice-
able overhead during the cold-start of a container, and when
multiple containers are running on the same node. During
a large spike in network requests, a significant number of
requests fail, The time taken for the system to scale and
reach a state where it can server all request is significant, and
will definitely affect user experience. Building a end-to-end
Serverless MapReduce model is possible, but it breaks
few serverless concepts like statelessness and short lived
functions. A simple workaround is to delegate the role of the
master node in the MapReduce to a virtual machine.

For public offerings of Function as a Service (AWS
Lambda, Google Cloud functions) to be able to perform as
well do, we are positive that there are efficient algorithms that
manage scaling and distribution of containers across multiple
servers. Deploying a serverless architecture depends on the
use case, workload and traffic generated by the application. It
makes more sense, both from a cost perspective and from a
system architecture perspective, to use dedicated servers for
applications with a fairly constant, predictable workload.
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6 Appendix 1
• Our work involved lot of tweaking into the configuration

files of Docker, Kubernetes and OpenFaas, specifically
to customize the environment for supporting our func-
tions and experimentation.
• All functions were written in Python preferably because

of the ease of writting. The Client scripts for invoking
requests to function endpoints were written in C++ 11
and used ¡chrono¿ for keeping time of requests. Other
than the standard libraries, we used pysftp, json, requests
and nltk.
• The overhead seen for I/O experiments were unex-

pected, but this behavior has been reported by others.
Further investigation is needed to come up with conclu-
sions.
• Some of the operations in Kubernetes were quite devi-

ated from the normal stated on their website. For in-
stance, Even after the pod has been spawned, the re-
quests are continued to be rejected for a span of next
5-10 sec. This is a huge overhead while beginning from
Clod start. However, the OpenFaas has the default pol-
icy of having atleast one replica ready, until otherwise
stated in config.
• We faced difficulties accessing data in the user space and

NFS storage through a container. There does not seem
to ba an intuitive way of doing so, given the fact that
the serverless functions do not write and maintain it’s
state. There exists tweaks to solve this around. we did
good research for this problem but ended up going with
the wrong choice (SFTP to the underlying NFS storage,
which proved to be quite limiting with the increasing
load).
• We did not have any issues working with the OpenFaas.

There are well written blogs and tutorials by the creator.
However, we do feel OpenFaas is limited in the flexi-
bility of adding volumes, persistent storages, changing
the base container images and container configurations.
We had to tweak the Docker files while wrapping the
functions in containers (one thing which was not openly
stated on the website). The other limitation of OpenFaas
is in its support for the triggers that can initiate execu-
tion. It natively exposes endpoints while supports other
triggers (like, from Kafka, Cloud services like, AWS,
Google Cloud and Azure) through 3rd-party codes.

7 Appendix 2
• All the containers that are used in the above experiments

are built and hosted at

https://hub.docker.com/u/g31pranjal
• The code for replicating the containers, client calls,

Dockerfiles are avaialable publically at
https://github.com/g31pranjal/serverless-tests

https://hub.docker.com/u/g31pranjal
https://github.com/g31pranjal/serverless-tests
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